KONERU LAKSMAIAH EDUCATION FOUNDATION (KLEF) DEPARTMENT OF MATHEMATICS PROGRAM DEVELOPMENT DOCUMENT M.Sc.(Applied Mathematics)

2019

D. Program Articulation Matrix

			Ca				Credi					P O					I	rs D	
S.No	Course Code	Course Name	tegory	L	Т	P/S	ts	1	2	3	4	5	6	7	8	1	2	3	4
1	19AM11 01	Real Analysis		4	0	0	4	2	2										
2	19AM11 02	Ordinary Differential Equations		3	0	2	4			2		3		2	2	1	4	1	4
3	19AM11 03	Numerical Methods		3	0	2	4					3	3	2	2	1	4	1	4
4	19AM11 04	Introduction to Computer Programmi ng		3	0	2	4					3	3	2		2	2	2	2
5	19AM11 05	Mathemati cal Statistics		4	0	0	4	2		2				2		2	1	2	2
6	19AM11 06	Seminar-1		0	0	2	1						2						
7	19AM12 01	Soft computing		4	0	0	4					3	3	2		2	2	2	2

			0				Cre						PS	0					
S.No	Course Code	Course Name	ategory	L	Т	P/S	dits	1	2	3	4	5	6	7	8	1	2	3	4
8	19AM1202	Data Structures		3	0	2	4	2	2							1	2	1	2
9	19AM1203	Statistical Inference		4	0	0	4		2					2		2	2	2	2
10	19AM1204	Discrete Mathematics		4	0	0	4		2							2	3	3	3
11	19AM1205	Complex Analysis		4	0	0	4					3	3			1	4	4	4
12	19AM1206	Seminar-2		0	0	2	1												
13	19AM2101	Partial Differential Equations		3	0	2	4					3	3			1	4	1	1
14	19AM2102	Data Base Management system		3	0	2	4		2	2				2		2	2	1	4
15	19AM2103	Abstract Algebra		4	0	0	4			2	2				2	2	1	1	2
16	19AM2104	Transform Techniques		3	0	2	4					3	3		2	3	3	3	3
17	19AM2105	Seminar-3		0	0	2	1												
18	19AM2106	Cryptanalysis and Cyber Defense		3	0	2	4					3	3	2	2	1	1	1	1
19	19AM2107	statistics with R Programming		3	0	2	4					3	3	2	2	3	3	2	2

			Ca				Credi						PS O						
S.No	Course Code	Course Name	tegory	L	Т	P/S	ts	1	2	3	4	5	6	7	8	1	2	3	4
20	19AM2108	Continuum Mechanics- I		4	0	0	4					3	3		2	2	2	2	2
21	19AM2201	Topology		4	0	0	4				3	3				2	2	2	2
22	19AM2202	Mathematic al Programmi ng		4	0	0	4					3	3	2		1	1	1	1
23	19AM2203	Dissertation with research Publications		0	0	24	12					3	3	3					
24	19AM2204	Computer networks and Security		3	0	2	4					3	3	3	2	2	2	2	2
25	19AM2205	Crypto currencies & Block chain Technologies		3	0	2	4					3	3	2	2	2	2	2	2
26	19AM2206	Big Data Analytics		3	0	2	4				3	3		2	2	2	2	1	1
27	19AM2207	Cloud Computing		3	0	2	4					3	3	2	2				
28	19AM2208	Continuum Mechanics-II		4	0	0	4					3	3		2	3	3	4	3
29	19AM2209	Computational Fluid Dynamics		3	0	2	4					3	3		2	2	2	2	3

						K L UNIVERSITY							
		2010 20		- (A N	DEPA	ARTMENT OF MATHEMAT		S	T				- 4
		2019-20	20 MI.S	c.(App.)		<u>Maucs) BAICH Course Outc</u> Course Articulation Matrix	om	es v	's P	TOĮ	gra	mU	ucomes
							Pr	ogra	nm (Out	con	nes	Course Rationale
S No	Course Code	Course Title	LTP	Credits	CO NO	Description of the Course Outcome	1	2	3	4	5	6	
					CO1	Describe the fundamental properties of the real numbers that lead to the formal development of real analysis.		2			5	6,7	
					CO2	Demonstrate an perceptive of limits and how they are used in sequences, series, differentiation and integration		2			5	6,7	
1	19AM1101	Real Analysis	4-0-0	4	CO3	Describe and apply the important properties of the limit and continuity and the differentiation and integration of the sequences and series of functions. Explain the basic properties of the Riemann integration		2			5	6,7	For the students to develop a strong foundation in Real Analysis and the theory of integration
					CO4	Determine the Riemann integrability of a bounded or unbounded function and prove a selection of theorems concerning integrations.		2			5	6,7	

					CO1	Apply the existence and uniqueness conditions of solution of the homogeneous/non- homogeneous differential equation and the system of differential equations.		2	3		
					CO2	Apply the power series method of solution to second order ODE arising in mathematical physics-Gauss hypergeometric, Hermit and Chebyshev polynomials.	1	2			This course intends to highlight basi concepts, principles and procedure of ODE as a tool to analyze practica problems and as such it lays dow
2	19AM1102	ORDINARY DIFFERENTIAL EQUATIONS	3-0-2	4	CO3	Apply Green's function method to study behavior of the Boundary Value Problems (BVP) for second order ODE.		2			foundation for the understanding of basicscience and Engineering problems Our emphasis is on principles rather than routine calculations and our approach is a compromise betwee
					CO4	Determine the oscillatory solutions of BVP and illustrate their qualitative properties.		2			acquire the knowledge on usage of OD with MATLAB.
					CO5	Verify the solution of the ODE through MATLAB.		2			
3	19AM1103	Numerical Methods	3-0-2	4	CO1	Identify the difference between solutions of system linear and roots of non-linear equations by direct, bisection methods.		2	3		The skills will be developed to identify the solution for different types of differential

					CO2	Construct the interpolation forward and backward tables and find the Eigen values and vectors by using mat lab also.	1	2			equations using Numerical Techniques and MATLAB
					CO3	integration problems for different methods and find the values and compare the values by using mat lab also.		2			
					CO4	Construct numerical solutions of first and second order ordinary differential equations and compare the numerical values with mat lab also.		2			
					CO5	Verify the solution of the N.M. through MATLAB.		2			
		Introduction to Computer Programming			CO1	Introduction to basic computer organization and computer fundamentals. Introduction to Programming language fundamentals. Illustrate and use Control Flow Statements in C++.	1			1	
4	19AM1104		3-0-2	4	CO2	Introduction to functions in C++ and Decomposition of programs through function.	1				
					CO3	Interpret & Illustrate user defined C++ functions and different operations on list of data.					
					CO4	Illustrate Object Oriented Concepts and implement linear data structures	1				
					CO5	Develop the code for the algorithms in C++	8				
5	19AM1105	MATHEMATICAL STATISTICS	4-0-0	4	CO1	Explain the concepts of random variable, probability distribution, distribution function, expected	1				To apply statistics to real time problems

					CO2	value, variance and higher moments, and calculate expected values and probabilities associated with the distributions of random variables Explain the concepts of independence, jointly distributed random variables and conditional distributions, and use generating functions to establishthe distribution of linear combinations of independent randomvariables.	2			
					CO3	Explain the concepts of random sampling, statistical inference and sampling distribution, and state and use basic sampling distributions.State the central limit theorem, and apply it.	1			
					CO4	Construct the sampling distribution of mean and variance and calculation of mean and variance of sampling distribution of mean and variance	2			
6	19AM1106	Seminar-1	0-0-2	1						

					CO1	Apply A*, AO*, Branch and Bound search techniques for problem solving.	1				
					CO2	Differentiate and classify traditional and non-additional optimization methods and Formulate an optimization problem to solve complex problems.	1			5	
6	19AM1201	Soft Computing	3-0-2	4	CO3	Apply Neural network methods for simple applications	1			5	
					CO4	Apply GA, PSO and ACO algorithms for various optimization problems	1			5	
					CO5						
		Data			CO1	Analyze and compare stack ADT and queue ADT implementations using linked list and applications.	1		4		
7	104141202	Structures	202	1	CO2	Analyze the linked lists and types of Binary trees and their representations.	1		4		
/	1341011202		5-0-2	4	CO3	Apply measures of efficiency on algorithms and Analyze different Sorting Algorithms, Analyze the linked implementation of Binary,Balanced Trees and different Hashing techniques.	1	2			

		CO4	Analyze different representations, traversals, applications of Graphs and Heap organization.		2	4	
		CO5	Develop and Evaluate common practical applications for linear and non-linear data structures.	1	2		

					CO1	Obtain estimates of parameters and identify the various methods to estimateit.	1			
					CO2	Apply various principles for the data reduction and draw conclusion about the population based upon samples drawn from it		2		
8	19AM1203	Statistical Inference	4-0-0	4	CO3	Describe the tests of significance and draw conclusion about the population and sample using various tests.			3	
					CO4	Testing the hypothesis to analyze the variance and also predict the linear relationship between the two variables			3	

9	19AM1204	Discrete Mathematics	4-0-0	4	CO1	Apply the rules of Propositional logic to establish valid results and apply rules of valid inference and hence understand how to construct correct mathematical arguments, Mathematical Induction	3,6,7				
---	----------	-------------------------	-------	---	-----	--	-------	--	--	--	--

					CO2	Understand the concept of relations, functions and discrete structures, Count discrete event occurrences, lattices, to represent the Boolean functions by an expression	2,3,6,7		
					CO3	Formulate and solve recurrence relations of homogeneous and non homogeneous relations, understand some recursive algorithms.	2,3,6,7		
					CO4	Use graph theory for various techniques to study and analyze different problems associated with computer design, logic design, Formal languages, Artificial Intelligence etc, Analysis of different traversal methods for trees and graphs.	2,3,5,6,7		
					CO1	Explain the definition of continuity, differentiability, apply the concepts of analytic function and harmonic function to explain Cauchy-Riemann equations; Understganding Power Series.	1		
10	19AM1205	Complex Analysis	3-0-2	4	CO2	Apply the concept of conformal mapping, and describe the mapping properties of Möbius transformations and how to apply them for conformal mappings in Fluid Dynamics,etc.	2,7		
		Analysis			CO3	Explain complex contour integrals; Understand simple sequences and series apply the convergence properties of a power series, and to determine the Taylor series or the Laurent series of an analytic function.	1,7		
					CO4	Explain properties of singularities and poles of analytic functions and apply to compute residues integrals by applying residue techniques.	1		

					CO1	Model the relevant phenomena as a Partial differential equations and obtain the solutions	2			
11	1041421.01	Partial Differential Equations	100	1	CO2	Understand the Nature of the higher order Partial differential equation and obtain the solutions	3			
	19AM2101		4-0-0	4	CO3	Express the Laplace equation in Various coordinate systems and solve by Fourier series method	1,5			
					CO4	Solve the Hyperbolic and Parabolic differential equations by Separation of variable method	1,5			

		Data			CO1	Illustrate the functional components ofDBMS, importance of data modelling in design of a database.	1,5	;		
		Base			CO2	Build queries using SQL and concepts of PL/SQL	1			
12	19AM2102	systems	3-0-2	2 4	CO3	Apply normalization techniques and indexing to construct and access decent database.	5			
					CO4	Identify the importance of transaction processing, concurrency control and recovery techniques	1			
					CO5	Develop a good database and define SQL queries for data analysis	3			
13					CO1	Define group, subgroup and quotient group with examples, and proving	1,4			
		Abstract			CO2	Define homomorphism and automorphisim of groups .Explain Cayley's and Sylow's theorems of finite groups and demonstrate the problems.	1,4			
	19AM2103	Abstract Algebra	4-0-0	4	CO3	Define a ring, homomorphismof rings, ideal, quotient rings with examples. Explain principal ideal domain, unique factorization domain, modules over PID theorems and demonstrate the problems.	1,2			
					CO4	Define field and Polynomial ring with examples. Explain the field of Quotients of an integral domain and Euclidean and polynomial rings with problems.	2,4			

		Transform Techniques			CO1	Apply Laplace transform techniques to solve linear differential equations in system analysis where initial conditions can be easily included to give system response.	1,3,4		
					CO2	Applying z- transform and Mellin transform to the analysis and characterization of Discrete Time systems.	1,3		
14	19AM2104		3-0-2	4	CO3	Apply Fourier series to analyze various signals.	4		
					CO4	Apply Fourier transforms to analyze various signals.	6		
					CO5	Verify the solution of the Transform techniques through MATLAB.			

				CO1	Explain the definition of Finite, countable, uncountable sets and apply the concepts of composite function and Axiom of choice to explain Zorn's Lemma.	1			
15	19AM2201	Tanalagu	Topology 4-0-0 4 Explain the concept of open sets, closed sets and basis for a topology describe the properties of product space and apply the concept of topological space and continuous function. 1 Topology 4-0-0 4 Explain the definition of compact space and connected space and connected space and connected space and connected space and Bolzano weierstrass property. 1	1					
		Гороюду		Explain the definition of compact space and connected space and apply the concept of finite intersection property and Bolzano weierstrass property.	1				
				CO4	Explain the properties of Hausdorff's space and normal space and apply the Urysohn's lemma to determine the urysohn's metrization theorem, Tietze extension theorem, and tychonoff theorem.	1			

					CO1	Apply different methods to find the optimal solution of linear programming problems and analyze the sensitivity of the solution.	3		
16	19AM2202	Mathematical	4-0-0	4	4 CO2 Different methods to find the optimal solution of Transportation 3	01 programming problems and analyze the sensitivity of the solution. 02 Different methods to find the optimal solution of Transportat and Assignment problems. 03 Apply non-linear optimization methods to solve non-linear programming problems 04 Apply Search methods tosolvenon-linearprogramming	3		
	137102202	Programming			CO3	Apply non-linear optimization methods to solve non-linear programming problems	3		
					CO4	Apply Search methods tosolvenon-linearprogramming problems	3		

		Crypto Analysis			CO1	Understand the principles of cryptography by analyzing Various attacks and apply different classic encryption techniques.	1		
		And			CO2	Understand the principles of block cipher and analyze algorithms like DES, AES.	5		
17	19AM2106	Cyber	4-0-0	4	CO3	Understand and apply different algorithms of public key crypto system for ensuring secured communication.	5		
		Defense	4-0-0		CO4	Apply Security engineering principles and respective algorithms to achieve authentication, integrity and digital certification.	5		
					CO5	Implement various cryptographic algorithms so as to analyze the achievability of security goals like Confidentiality, integrity, authentication and also Justify the possibility of Cryptanalysis attack with each algorithm.	5		

18	19AM2204	COMPUTER	102	1	CO1	Understand network security issues and apply key distribution techniques.	1,5		
10	1941012204	NETWORKS	4-0-2	4	CO2	Apply user authentication and Transport layer Security techniques.	1,5		

	AND	CO3	Understanding Wireless Network Security	1,5		
	SECURITY	CO4	Applying Email and IP Security concepts	1,5		
		CO5	Implementing the various Network Security concepts and analyse their performance using various networking tools	1,5		

		Crypto			CO1	Understand crypto currencies and Markets, Mining and Crypto currencies	1,3		
		Currencies			CO2	Understand block chain technology, Transactions, Blocks and Hashes	2,3		
	18 19AM2205 (& Block)-2 4		Applying Hash cryptography, Encryption vs hashing. Analyzing			
18	19AM2205	Chain	3-0-2		CO3	Transactions, Digital signature, Information technology programs	2		
		Technologies			CO4	Analyzing Security and safeguards: protecting block chain from tackers.	2		
					CO4	Creation of Merkle trees, block chain, Wallet structure, address structure	5		

					CO1	Understand the basic functions in R programming and identify the operators using in it.	8	
19	19AM2107	R	3-0-2	4	CO2	Simulating data using R	8	
	15/ 10/210/	PROGRAMMING			CO3	Apply various probability distributions to the real world problems using R	3	
					CO4	Analyze the data using various linear and nonlinear lines using R		

					C	05	3	;		
		Big			CO1	Illustrate the concepts of big data, Initial exploration of analysis of data and Data visualization.	1,5			
		Data Analytics 206 <i>3-0-2</i>			CO2	Demonstrate Initial exploration of data and advanced data analytics by using R	2,3			
20	19AM2206		3-0-2	4	CO3	Examine advanced algorithms & Statistical modeling for big data using HDFS, HIVE, and PIG.	1			
20					CO4	Apply advanced SQL functions for in- database analytics by MADlib, Greenplum along with common deliverables of analytics life cycle project	2,4			
					CO5	To implement Lab experiments using Hadoop	2,4			

		CLOUD			CO1	Identify the appropriate cloud services for a given application	2			
		COMPUTING			CO2	Understand authentication, confidentiality and privacy issues in Cloud computing environment.	3			
21	21 19AM2207		3-0-2	4	CO3	Justify financial and technological implications for selecting cloud computing platforms	2			
					CO4	Analyze Cloud infrastructure including Google Cloud and Amazon Cloud.	5			
					CO5	Develop applications using VariousCloud Platforms	5			

22	19AM2108	Continuum Mechanics-1			CO1	Apply the basic concepts of generalized co-ordinates, unilateral and bilateral constraints; principle of virtual work, D'Alemberts principle.	3		
		4-0-0	4-0-0	4	4 Apply the methods of variational principle, problems of calculus of variations, shortest distance, minimum surface of revolution, Brachistochrone problem iso-perimetric problem, geodesic.	3			
			C	CO3	Analyze Lagranges equation of first kind and of second kind, uniqueness of solution, Energy equation of conservative fields, generalized equations	4			
					CO4	Analyze the principle of least action, Routh's equation, Hamilton-canonical equation of Motion.	4		

23	19AM2208	Continuum Mechanics-2		0-0 4	CO1	Apply various parameters such as Body force, Surface force, Cauchy's stress principle. Stress vector, State of stress at a point, relationship. These basics are essential for firther analysis and to know the composition of fluidstructure	1		
		4-0-0 4	1-0-0		CO2	Analyze force and moment equilibrium, Stress tensor symmetry, Stress quadric of Cauchy, Stress transformation laws, Principal stress, Stress invariant, Stress ellipsoid.	2		
			4-0-0		CO3	Analyze the concepts of deformation Gradients, Displacement Gradient, Deformation tensor, Finite strain tensors, Small deformation theory—	3		
				CO4	Analyze finite strain interpretation, principal strains, strain invariant, cubical dilatation, Compatibility equation for linear strain, Strain energy function. Hook's Law. Methods and Solutions of Navier-Stocks Equations.	5			

	l l	Computational	l			Understand the concepts of Computational Fluid Dynamics and	
24	19AM2209	Fluid	3-0-2	4	CO1	Principles of Conservation: Continuity Equation, Navier Stokes Equation, Energy Equation. and General Structure of ConservationEquations,	

Dynamics		Approximate Solutions of Differential Equations:		
	CO2	Apply the concepts of steady state Diffusion Problems, Boundary Condition Implementation. Discretization of Unsteady State Problems, FTCS (Forward time central space) scheme,	1	
	CO3	Apply the basic features of Finite Volume Discretization of 2-D unsteady State Diffusion type Problems, Solution of Systems of Methods, Iterative Methods, -Diffusion Equations:	1	
	CO4	Analyze the nature of Navier Stokes Equations:Stream FunctionVorticity approach and Primitive variable approach, SIMPLE Algorithm, SIMPLER Algorithm,		
	CO5	To analyze the analytical solution and compare with that of numerical solution for a meaningful interpretation	1	